Organotransition-metal complexes of multidentate ligands

XIV *. Synthesis, structure and behavior in solution of some π-allyldicarbonyl complexes containing the pyrazole-derived bidentate ligands

Kom-Bei Shiu *, Cho-Jin Chang
Department of Chemistry, National Cheng Kung University, Tainan 70101 (Taiwan)
Sue-Lein Wang and Fen-Ling Liao
Department of Chemistry, National Tsing Hua University, Hsinchu 30043 (Taiwan)

(Received August 3rd, 1990)

Abstract

The π-allyldicarbonyl complexes, $\left[\mathrm{Mo}(\mathrm{N}-\mathrm{N})(\mathrm{CO})_{2}(\pi\right.$-allyl $\left.) \mathrm{Br}\right]$, can be prepared either directly by the allyl bromination of $\left[\mathrm{Mo}(\mathrm{N}-\mathrm{N})(\mathrm{CO})_{4}\right]\left(\mathrm{N}-\mathrm{N}=\mathrm{H}_{2} \mathrm{CPz}_{2}, \mathrm{H}_{2} \mathrm{CPz}_{2}^{\prime}, \mathrm{PhHCPz}_{2}, \mathrm{PhHCPz}_{2}^{\prime} ; \mathrm{Pz}=\right.$ pyrazol-1$\mathrm{yl} ; \mathrm{Pz}^{\prime}=3,5$-dimethylpyrazol-1-yl) or $\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}^{\prime}\right)(\mathrm{CO})_{3}\right]$ or indirectly by the reaction between $\left[\mathrm{Mo}(\mathrm{MeCN})_{2}(\mathrm{CO})_{2}(\pi\right.$-allyl $\left.) \mathrm{Br}\right]$ and $\mathrm{N}-\mathrm{N}$. The products obtained from $\left[\mathrm{Mo}\left(\mathrm{PhHCpz}_{2}^{\prime}\right)(\mathrm{CO})_{4}\right]$ or from $\left[\mathrm{MO}\left(\mathrm{PhHCPz}_{2}^{\prime}\right)(\mathrm{CO})_{3}\right]$ are identical, which supports the mechanism proposed previously for the allyl bromination of substituted metal carbonyl complexes. The single-crystal structure of $\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}^{\prime}\right)(\mathrm{CO})_{2}(\pi\right.$-allyl $\left.) \mathrm{Br}\right]$ has been determined by X-ray diffraction, explaining why the central proton of the allyl group in this complex or $\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}\right)(\mathrm{CO})_{2}(\pi\right.$-allyl $\left.) \mathrm{Br}\right]$ is more upfield relative to those of other similar complexes in the ${ }^{1} H$ NMR spectrum. Furthermore, the unique structural features help to confirm unequivocally the solvent-dependent coordination-stability of the pyrazole-derived bidentate ligands, $\mathrm{N}-\mathrm{N}$, in $\left[\mathrm{Mo}(\mathrm{N}-\mathrm{N})(\mathrm{CO})_{2}(\pi\right.$-allyl) Br$]$.

Introduction

The conformational effect of the six-membered boat-metallocycle in the $\mathrm{Mo}(\mathrm{N}-$ N) fragment ($\mathrm{N}-\mathrm{N}=\mathrm{H}_{2} \mathrm{CPz}_{2}, \mathrm{H}_{2} \mathrm{CPz}_{2}^{\prime}, \mathrm{PhHCPz}_{2}$, or $\mathrm{PhHCPz}_{2}^{\prime} ; \mathrm{Pz}=$ pyrazol-1-yl; $\mathrm{Pz}=3,5$-dimethylpyrazol-1-yl; Fig. 1) has recently led us to isolate the rare intramolecular η^{2}-arene compound, $\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}^{\prime}\right)(\mathrm{CO})_{3}\right]$ [2], and several paramagnetic, 16 -electron species, $\left[\mathrm{Mo}(\mathrm{N}-\mathrm{N})(\mathrm{CO})_{2} \mathrm{X}_{2}\right.$] with $\mathrm{X}=\mathrm{Br}$ or I [3]. Here we wish to report conclusive evidence showing that the stability of the metallacycle in

[^0]

Fig. 1. Structure and numering scheme for $N-N$ ligands: (i) $3-C-R=4-C-R=5-C-R=6-C-R=H$; $\mathrm{N}-\mathrm{N}=\mathrm{H}_{2} \mathrm{CP}_{2}$. (ii) $3-\mathrm{C}-\mathrm{R}=5-\mathrm{C}-\mathrm{R}=\mathrm{Me} ; 4-\mathrm{C}-\mathrm{R}=6-\mathrm{C}-\mathrm{R}=\mathrm{H} ; \mathrm{N}-\mathrm{N}=\mathrm{H}_{2} \mathrm{CP}_{2}^{\prime}$. (iii) $3-\mathrm{C}-\mathrm{R}=4-\mathrm{C}-\mathrm{R}=$ $5-\mathrm{C}-\mathrm{R}=\mathrm{H} ; 6-\mathrm{C}-\mathrm{R}=\mathrm{Ph} ; \mathrm{N}-\mathrm{N}=\mathrm{PhHCPz}_{2}$. (iv) $3-\mathrm{C}-\mathrm{R}=5-\mathrm{C}-\mathrm{R}=\mathrm{Me} ; 4-\mathrm{C}-\mathrm{R}=\mathrm{H} ; 6-\mathrm{C}-\mathrm{R}=\mathrm{Ph} ; \mathrm{N}-\mathrm{N}=$ $\mathrm{PhHCpz}_{2}^{\prime}$.
the π-allyldicarbonyl complexes, $\left[\mathrm{Mo}(\mathrm{N}-\mathrm{N})(\mathrm{CO})_{2}(\pi\right.$-allyl $\left.) \mathrm{Br}\right]$, in solution is dependent on the solvent used.

Results and discussion

The π-allyldicarbonyl complexes [$\mathrm{Mo}(\mathrm{N}-\mathrm{N})(\mathrm{CO})_{2}\left(\pi\right.$-allyl) Br] $\left(\mathrm{N}-\mathrm{N}=\mathrm{H}_{2} \mathrm{CPz}_{2}\right.$ (I), $\mathrm{H}_{2} \mathrm{CPz}_{2}^{\prime}$ (II), PhHCPz_{2} (III) and $\mathrm{PhHCPz}_{2}^{\prime}$ (IV)) can be obtained directly by the allyl bromination of $\left[\mathrm{Mo}(\mathrm{N}-\mathrm{N})(\mathrm{CO})_{4}\right]$ or $\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}^{\prime}\right)(\mathrm{CO})_{3}\right]$ or indirectly by the reaction between $\left[\mathrm{Mo}(\mathrm{MeCN})_{2}(\mathrm{CO})_{2}(\pi\right.$-allyl $\left.) \mathrm{Br}\right]$ and $\mathrm{N}-\mathrm{N}$ (eq. 1).

$\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}^{\prime}\right)(\mathrm{CO})_{3}\right]+\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{Br}$
$\left[\mathrm{Mo}(\mathrm{MeCN})_{2}(\mathrm{CO})_{2}(\pi-\mathrm{allyl}) \mathrm{Br}\right]+\mathrm{N}-\mathrm{N}$

Since $\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}^{\prime}\right)(\mathrm{CO})_{3}\right]$ can be prepared by the decarbonylation of $[\mathrm{Mo}(\mathrm{Ph}-$ $\left.\left.\mathrm{HCPz}_{2}^{\prime}\right)(\mathrm{CO})_{4}\right]$ [2], the fact that only one product, $\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}^{\prime}\right)(\mathrm{CO})_{2}(\pi\right.$-allyl) Br$]$, is obtained directly from both $\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}^{\prime}\right)(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}^{\prime}\right)(\mathrm{CO})_{3}\right.$] indicates that the initial loss of the carbonyl group cis to the bidentate ligand, $\mathrm{N}-\mathrm{N}$, in $\left[\mathrm{Mo}(\mathrm{N}-\mathrm{N})(\mathrm{CO})_{4}\right]$ occurs prior to the attachment of allyl bromide. The known chemistry of metal carbonyl complexes [4] would suggest η^{2}-bonding of the olefinic moiety rather than the bound bromine atom of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Br}$ for this attachment. Thus, the synthesis supports the mechanism proposed earlier for the allyl bromination of $\left[\mathrm{Mo}(\mathrm{phen})(\mathrm{CO})_{4}\right]($ phen $=o$-phenanthroline) on the basis of the related kinetic data [5]. Although two different geometrical isomers with the allyl group cis (cf. Fig. 2) and trans to the phenyl group of $\mathrm{PhHCPz}_{2}^{\prime}$ (or PhHCPz_{2}) are possible, the formation of only one single product with the cis allyl group by the reaction between $\left[\mathrm{Mo}(\mathrm{MeCN})_{2}(\mathrm{CO})_{2}(\pi\right.$-allyl) Br$](\mathrm{V})$ and $\mathrm{PhHCPz}_{2}^{\prime}$ (or PhHCPz_{2}) can be rationalized either by considering that there is only one stable conformation for PhHCPz_{2} (or $\mathrm{PhHCPz}_{2}^{\prime}$) in solution or by supposing that the process leading to the cis orientation has a lower energy barrier than that giving the trans geometry.

In the ${ }^{1} \mathrm{H}$ NMR spectra of $\left[\mathrm{Mo}(\mathrm{N}-\mathrm{N})(\mathrm{CO})_{2}(\pi\right.$-allyl $\left.) \mathrm{Br}\right]$ in acetone- d_{6}, the central proton, H_{c}, of the allyl group resonates as a multiplet at 4.21 for I, 4.36 for II, 2.28 for III and 2.21 ppm for IV (Table 1). Compared with the characteristic \mathbf{H}_{c} resonance range of $4-6.5 \mathrm{ppm}$ [4], the H_{c} proton of either III or IV is quite upfield. In order to explain this NMR feature, the solid-state structure of IV was determined; an ORTEP plot of this structure is shown in Fig. 2. From Fig. 3, which contains a projection view of the allyl group from the phenyl plane, it is clear that the ring-current of the phenyl moiety shields H_{c} rather strongly relative to H_{a} (the anti-protons) or H_{s} (syn-protons) of the allyl group in III or IV so that the chemical shifts for H_{a} or H_{s} in the compounds (Table 1) are within the general range of the chemical shifts for $\mathrm{H}_{\mathrm{a}}(1-3 \mathrm{ppm})$ and $\mathrm{H}_{\mathrm{s}}(2-5 \mathrm{ppm})$ [4].

Since compound I has a better solubility in $\mathrm{CD}_{3} \mathrm{CN}$ than that in acetone- d_{6}, the ${ }^{1} \mathrm{H}$ NMR spectrum of this compound was also measured in $\mathrm{CD}_{3} \mathrm{CN}$. To our surprise, the spectrum is more complicated than expected. We then measured the spectra of other three π-allyldicarbonyl complexes in $\mathrm{CD}_{3} \mathrm{CN}$ and found similar features. From the structure of IV and the NMR spectra of V and the $\mathrm{N}-\mathrm{N}$ ligand, we soon recognized that any spectrum for $\left[\mathrm{Mo}(\mathrm{N}-\mathrm{N})(\mathrm{CO})_{2}(\pi\right.$-allyl) Br$]$ measured in $\mathrm{CD}_{3} \mathrm{CN}$ is the superposition of three species including $\left[\mathrm{Mo}(\mathrm{N}-\mathrm{N})(\mathrm{CO})_{2}(\pi\right.$-allyl $(\mathrm{Br})]$, $\left[\mathrm{Mo}(\mathrm{MeCN})_{2}(\mathrm{CO})_{2}(\pi\right.$-allyl) Br$](\mathrm{V})$ and the free $\mathrm{N}-\mathrm{N}$ ligand. In other words, $\left[\mathrm{Mo}(\mathrm{N}-\mathrm{N})(\mathrm{CO})_{2}(\pi\right.$-allyl) Br$]$ and $\mathrm{CD}_{3} \mathrm{CN}$ are in equilibrium (eq. 2).

$$
\begin{align*}
{\left[\mathrm{Mo}(\mathrm{~N}-\mathrm{N})(\mathrm{CO})_{2}(\pi \text {-allyl }) \mathrm{Br}\right]+2 \mathrm{MeCN} \rightleftharpoons } & {\left[\mathrm{Mo}(\mathrm{MeCN})_{2}(\mathrm{CO})_{2}(\pi \text {-allyl }) \mathrm{Br}\right] } \\
& +\mathrm{N}-\mathrm{N} \tag{2}
\end{align*}
$$

(We did not measure the equilibrium constants due to the overlap of the resonance

Fig. 2. Structure of $\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}^{\prime}\right)(\mathrm{CO})_{2}(\pi\right.$-allyl) Br$]$ (IV) showing the atomic numering scheme and 50% probability thermal ellipsoids.
Table 1
Spectroscopic data for the $\mathrm{N}-\mathrm{N}$ ligands and the π-allyldicarbonyl complexes

Compound	$\mathrm{IR}_{\mathrm{cm}^{a}-1}, \nu(\mathrm{CO}),$	$\mathrm{NMR}^{\text {b }}$, ppm						
		Solvent	3-C-R/5-C-R	4-C-R	6-C-R/6-C-H	$\mathrm{Ha}^{\text {c }}$	$\mathrm{H}_{\mathrm{s}}{ }^{\text {c }}$	$\mathrm{H}_{\mathrm{c}}{ }^{\text {c }}$
$\mathrm{H}_{2} \mathrm{CPz}_{2}$		$\mathrm{CD}_{3} \mathrm{CN}$	$\begin{aligned} & 7.75(2 \mathrm{H}, \mathrm{~d})(2.4)^{d} . \\ & 7,47(2 \mathrm{H}, \mathrm{~d})(1.4) \end{aligned}$	$6.27(2 \mathrm{H}, \mathrm{t})$	$6.29(2 \mathrm{H}, \mathrm{s})$			
$\mathrm{H}_{2} \mathrm{CPz}_{2}^{\prime}$		$\mathrm{CD}_{3} \mathrm{CN}$	$\begin{aligned} & 2.40(6 \mathrm{H} \mathrm{~s}) \\ & 2.41(6 \mathrm{H}, \mathrm{~s}) \end{aligned}$	$5.78(2 \mathrm{H}, \mathrm{s})$	$5.95(2 \mathrm{H}, \mathrm{s})$			
PhHCPz_{2}		$\mathrm{CD}_{3} \mathrm{CN}$	$\begin{aligned} & 7.64(2 \mathrm{H}, \mathrm{~d})(2.4), \\ & 7.58(2 \mathrm{H}, \mathrm{~d})(1.5) \end{aligned}$	$6.34(2 \mathrm{H}, \mathrm{t})$	$\begin{aligned} & 7.62(1 \mathrm{H}, \mathrm{~s}), \\ & 7.38(3 \mathrm{H}, \mathrm{~m})^{c}, \\ & 7.05(2 \mathrm{H}, \mathrm{~m})^{e}{ }^{e} \end{aligned}$			
$\mathrm{PhHCPz}_{2}^{\prime}$		$\mathrm{CD}_{3} \mathrm{CN}$	$\begin{aligned} & 2.11(6 \mathrm{H}, \mathrm{br}), \\ & 2.12(3 \mathrm{H}, \mathrm{~s}), \\ & 2.13(3 \mathrm{H}, \mathrm{~s}) \end{aligned}$	$5.89(2 \mathrm{H}, \mathrm{br})$	$\begin{aligned} & 7.58(1 \mathrm{H}, \mathrm{~s}) \\ & 7.34(3 \mathrm{H}, \mathrm{~m}), \\ & 7.01(2 \mathrm{H}, \mathrm{~m}) \end{aligned}$			
	$\begin{aligned} & 1934,1826 \\ & (\mathrm{KBr}) \end{aligned}$	$\mathrm{CD}_{3} \mathrm{CN}$	$\begin{aligned} & 7.89(2 \mathrm{H}, \mathrm{~d})(2) \\ & 7.87(2 \mathrm{H}, \mathrm{~d})(2) \end{aligned}$	$6.41(2 \mathrm{H}, \mathrm{t})$	$\begin{aligned} & 8.25(1 \mathrm{H}, \mathrm{~d})(3), \\ & { }^{*}(1 \mathrm{H}) \end{aligned}$	$1.37(2 \mathrm{H}, \mathrm{d})(9.3)$	$3.53(2 \mathrm{H}, \mathrm{d})(7.0)$	$4.25(1 \mathrm{H}, \mathrm{m})$
I	$\begin{aligned} & 1944,1842 \\ & \left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \\ & 1956,1866,1844(\mathrm{sh}) \\ & (\mathrm{MeCN}) \end{aligned}$	acetone-d ${ }_{6}$	$\begin{aligned} & 8.09(2 \mathrm{H}, \mathrm{~d})(2.6), \\ & 8.03(2 \mathrm{H}, \mathrm{~d})(2.6) \end{aligned}$	$6.48 \mathrm{H}, \mathrm{t})$	$\begin{aligned} & 7.85(1 \mathrm{H}, \mathrm{~d})(3), \\ & 7.45(1 \mathrm{H}, \mathrm{~d})(3) \end{aligned}$	$1.32(2 \mathrm{H}, \mathrm{d})(9.1)$	$3.50(2 \mathrm{H}, \mathrm{br})$	$4.21(1 \mathrm{H}, \mathrm{m})$
	$\begin{aligned} & 1922,1828 \\ & (\mathrm{KBr}) \end{aligned}$	$\mathrm{CD}_{3} \mathrm{CN}$	$\begin{aligned} & 2.07(3 \mathrm{H}, \mathrm{~s}), \\ & 2.18(3 \mathrm{H}, \mathrm{~s}), \\ & 2.33(3 \mathrm{H}, \mathrm{~s}), \\ & 2.45(3 \mathrm{H}, \mathrm{~s}) \end{aligned}$	$\begin{aligned} & 5.84(1 \mathrm{H}, \mathrm{~s}) \\ & 5.87(1 \mathrm{H}, \mathrm{~s}) \end{aligned}$	$\begin{aligned} & 5.95(1 \mathrm{H}, \mathrm{~d})(15.7), \\ & 6.00(1 \mathrm{H}, \mathrm{~d})(15.7) \end{aligned}$	$1.26(2 \mathrm{H}, \mathrm{d} \times 9.2)$	$3.08(2 \mathrm{H}, \mathrm{d})(5.6)$	$4.24(1 \mathrm{H}, \mathrm{m})$
II	$\begin{aligned} & 1950,1854 \\ & \left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \end{aligned}$	acetone- d_{6}	$\begin{aligned} & 2.44(6 \mathbf{H}, \mathbf{b r})^{\prime} \\ & 2.47(6 \mathbf{H}, \mathbf{b r}) \end{aligned}$	$5.99(2 \mathrm{H}, \mathrm{br}){ }^{\prime}$	$\begin{aligned} & 6.09(1 \mathrm{H}, \mathrm{~d})(15.7)^{\prime}, \\ & 6.29(1 \mathrm{H}, \mathrm{~d})(15.7){ }^{\prime} \end{aligned}$	1.19(2 H, d)(8.9)	$3.08(2 \mathrm{H}, \mathrm{d})(6.4)^{\prime}$	$4.36(1 \mathrm{H}, \mathrm{m}){ }^{\prime}$

1949, 1862
(M44, 1857
${ }_{(\mathrm{KBr})}$ 8 $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 1952, 1862 웅 $\mathrm{CD}_{3} \mathrm{CN} \quad 2.19(6 \mathrm{H}, \mathrm{br})$, $2.43(3 \mathrm{H}, \mathrm{s})$,
$2.54(6 \mathrm{H}, \mathrm{br})$,
$2.57(6 \mathrm{H}, \mathrm{s})$

$8.43(1 \mathrm{H}, \mathrm{s})$,
$7.40(3 \mathrm{H}, \mathrm{m})$,
$6.01(2 \mathrm{H}, \mathrm{m})$
$8.31(1 \mathrm{H}, \mathrm{s})$,
$6.06(2 \mathrm{H}, \mathrm{m})$

$6.06(2 \mathrm{H}, \mathrm{m})$
6.23($2 \mathrm{H}, \mathrm{br}) \quad 7.61(1 \mathrm{H}, \mathrm{s})$,
$7.43(3 \mathrm{H}, \mathrm{m})$,

$7.36(3 \mathrm{H}, \mathrm{m})$,
$6.04(2 \mathrm{H}, \mathrm{m})$
(9'H Z) 9S'9

6.23(2 H, br)
8.20(2 H, d)(2.3),
$7.96(2 \mathrm{H}, \mathrm{br})$
 -
$8.01(2 \mathrm{H}, \mathrm{br})$

NO ${ }^{\text {s }}$ د
${ }^{9} p$-әиоңәге
${ }^{9} p$-әиоигэе
CDCl_{3}
$\mathrm{CD}_{3} \mathrm{CN}$
$1.14(2 \mathrm{H}, \mathrm{d})(9.3) \quad 3.25(2 \mathrm{H}, \mathrm{d})(6.2) \quad 4.00(1 \mathrm{H}, \mathrm{m})$
$1.14(2 \mathrm{H}, \mathrm{d})(9.3) \quad 3.25(2 \mathrm{H}, \mathrm{d})(6.2) \quad 4.00(1 \mathrm{H}, \mathrm{m})$
${ }^{a}$ In KBr disc or in solution using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or MeCN as solvent. Abbreviation: sh, shoulder. ${ }^{b}$ The chemical shifts are not assigned for the 3-C-R and 5-C-R protons. An asterisk represents a signal buried in other signals. Abbreviations: s, singlet; d, doublet; t, triplet; m, multiplet; br, a broad signal which may be either the unresolved multiplet or two combined singlets. ${ }^{〔} \mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{s}}$ and H_{c} represent the anti; syn- and central-protons of the π-allyl group, respectively. ${ }^{d}$ Coupling constant in hertz. ${ }^{\text {e }}$ Phenyl protons. ${ }^{\dagger}$ Reported data [14].

Fig. 3. Projection view of the π-allyl group from the phenyl plane in IV.
signals. However, the ${ }^{1} \mathrm{H}$ NMR signals observed in $\mathrm{CD}_{3} \mathrm{CN}$ were assigned (Table 1) and the ratios - 0.39 for $[\mathrm{V}] /[\mathrm{I}], 0.69$ for [V]/[II], 0.72 for [V]/[III] and 1.06 for [V]/[IV] - were calculated based on the integrated area of resonance signals of H_{a} in $\left[\mathrm{Mo}(\mathrm{MeCN})_{2}(\mathrm{CO})_{2}(\pi\right.$-allyl $\left.) \mathrm{Br}\right](\mathrm{V})$ and that in $\left[\mathrm{Mo}(\mathrm{N}-\mathrm{N})(\mathrm{CO})_{2}(\pi\right.$-allyl $\left.\left.) \mathrm{Br}\right]\right)$. Thus, although two sharp carbonyl-stretching bands are present at their specific positions for $\left[\mathrm{Mo}(\mathrm{N}-\mathrm{N})(\mathrm{CO})_{2}(\pi\right.$-allyl) Br$]$ in a KBr disc or in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, two $\nu(\mathrm{CO})$ bands or shoulders are found in identical positions within experimental error (ca. $\pm 5 \mathrm{~cm}^{-1}$) to those of 1954 and $1864 \mathrm{~cm}^{-1}$ for $\left[\mathrm{Mo}(\mathrm{MeCN})_{2}(\mathrm{CO})_{2}(\pi\right.$-allyl $\left.) \mathrm{Br}\right]$ in MeCN (Table 1).

The solid-state structure of $\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}^{\prime}\right)\left(\mathrm{CO}_{2}(\pi-a l l y l) \mathrm{Br}\right](\mathrm{IV})\right.$
The molecular structure of $\left[\mathrm{Mo}\left(\mathrm{PhHCpz}_{2}^{\prime}\right)(\mathrm{CO})_{2}(\pi\right.$-allyl) Br$]$ (IV) is shown in Fig. 2 and pertinent crystallographic parameters are given in Tables $2-4$. The molecule can be described as pseudooctahedral with the assumption that the allyl moiety occupies one coordination site. The molybdenum atom is surrounded by six ligands, viz. an allyl group, two terminally coordinated carbonyl groups, the bidentate ligand and a bromine atom.

The six-membered $\mathrm{Mo}-\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}-\mathrm{N}(3)-\mathrm{N}(4)$ metallacycle of the $\mathrm{Mo}(\mathrm{Ph}-$ $\mathrm{HCpz}_{2}^{\prime}$) fragment in IV adopts a shallow boat form analogous to the metallocycle in $\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}^{\prime}\right)(\mathrm{CO})_{4}\right]$ [2] and that in $\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}^{\prime}\right)(\mathrm{CO})_{2} \mathrm{I}_{2}\right]$ [3], but in contrast to the nearly planar five-membered Mo-N-C-C-N linkage of the Mo(phen) or Mo (bpy) (bpy $=2,2^{\prime}$-bipyridine) fragment observed in other π-allyldicarbonyl complexes, including $\left[\mathrm{Mo}(\mathrm{bpy})(\mathrm{CO})_{2}(\pi\right.$-allyl) $($ pyridine $)]\left[\mathrm{BF}_{4}\right](\mathrm{VI}),\left[\mathrm{Mo}(\right.$ phen $)(\mathrm{CO})_{2}(\pi$ -2-methylallyl)(NCS)] (VII), $\left[\mathrm{Mo}(\mathrm{bpy})(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{C}_{4} \mathrm{Ph}_{3} \mathrm{O}\right) \mathrm{Br}\right]$ (VIII) and [Mo(bpy)-$\left.(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{Ph}_{3}\right) \mathrm{Br}\right]$ (IX) [6-8]. The fact that the distances between Mo and $\mathrm{N}(1)$ and $\mathrm{N}(4)$ in IV are $2.307(5)$ and $2.327(5) \AA$, respectively (Table 3), which are significantly longer than the Mo-N distances of 2.209(6), 2.290(5) in VI [6], 2.252(8), 2.255(8) in VII [7], 2.211(8), 2.233(8) in VIII and 2.223(19), 2.221(17) \AA in IX [8], and that the Mo- Br bond length in IV is $2.649(1) \AA$ (Table 3), which is slighly longer than that of $2.619(1)$ in VIII or that of $2.626(3) \AA$ in IX [8], indicates that the nonbonded interactions between the two pyrazolyl rings sticking below the boat and the Br atom weaken the $\mathrm{Mo}(\mathrm{N}-\mathrm{N})$ metallacycle more than the $\mathrm{Mo}-\mathrm{Br}$ bond in I-IV so that acetonitriles capable of strongly coordinating the central metal

Table 2
Atomic coordinates ($\times 10^{4}$) and anisotropic displacement coefficients ${ }^{a}\left(\AA^{2} \times 10^{3}\right)$ for $\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}^{\prime}\right)(\mathrm{CO})_{2}(\pi\right.$-allyl)Br] (IV)

Atom	x	y	z	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Mo	6131(1)	823(1)	8214(1)	28(1)	24(1)	33(1)	-1(1)	-3(1)	-1(1)
Br	6586(1)	742(1)	9988(1)	50(1)	45(1)	35(1)	2(1)	-6(1)	3(1)
$\mathrm{O}(11)$	3426(5)	468(4)	8777(5)	31(3)	58(4)	118(5)	8(4)	3(4)	-12(3)
$\mathrm{O}(22)$	5608(6)	-1270(4)	8195(5)	83(4)	26(3)	91(5)	-2(3)	-16(4)	-15(3)
$\mathrm{N}(1)$	8254(5)	838(4)	8190(4)	29(3)	30(3)	45(3)	-9(3)	3(3)	5(3)
N(2)	8984(5)	1620(4)	8234(4)	26(3)	30(3)	44(3)	-5(3)	3(3)	3(2)
N(3)	7514(5)	2861(4)	8420(4)	28(3)	24(3)	40(3)	-3(2)	2(2)	2(2)
N(4)	6424(5)	2398(4)	8489(4)	30(3)	25(3)	35(3)	5(2)	0 (2)	4(2)
C	8551(6)	2503(5)	7909(5)	34(4)	25(3)	40(4)	1(3)	4(3)	-5(3)
C(11)	4434(7)	651(5)	8563(6)	35(4)	32(4)	61(5)	-1(4)	-8(4)	1(3)
C(22)	5858(7)	-496(5)	8179(6)	43(4)	37(4)	43(4)	-6(4)	-9(4)	0 (3)
C(31)	6376(8)	279(7)	6741(5)	54(5)	81(6)	35(4)	-18(5)	0(4)	-12(5)
C(32)	5936(9)	1181(6)	6762(6)	86(7)	55(5)	35(4)	5(4)	-17(5)	-38(5)
C(33)	4759(9)	1340(7)	7107(6)	67(6)	60(6)	53(5)	15(4)	-31(5)	-7(5)
C(41)	8473(7)	4410(5)	8766(6)	49(5)	39(4)	72(5)	-17(4)	-8(4)	-12(4)
C(42)	7454(7)	3726(5)	8795(5)	42(4)	24(3)	35(4)	-6(3)	-6(3)	-5(3)
C(43)	6294(6)	3801(5)	9140(5)	44(5)	28(3)	41(4)	-8(3)	-3(4)	12(3)
C(44)	5680(7)	2980(5)	8937(5)	34(4)	34(4)	37(4)	4(3)	0 (3)	7(3)
$\mathrm{C}(45)$	4387(7)	2749(6)	9194(6)	41(4)	43(5)	65(5)	-6(4)	10(4)	7(4)
C(51)	8606(8)	-851(6)	8459(8)	53(5)	31(4)	142(10)	8(6)	-10(6)	20(5)
C(52)	9026(7)	135(5)	8400(6)	40(4)	27(3)	64(5)	-12(4)	10(4)	6(3)
C(53)	10206(7)	471(5)	8545(6)	27(3)	32(4)	60(5)	-3(4)	-2(3)	12(3)
C(54)	10157(7)	1420(5)	8431(5)	37(4)	43(4)	32(4)	-3(3)	-3(3)	6(3)
C(55)	11147(7)	2115(6)	8479(6)	34(4)	52(5)	$77(6)$	4(4)	-12(5)	4(4)
C(61)	8402(7)	2572(5)	6873(5)	40(4)	31(3)	40(4)	0(3)	8(4)	-8(3)
C(62)	7687(8)	3241(5)	6492(5)	62(5)	34(4)	41(4)	7(3)	-1(4)	-2(4)
C(63)	7593(10)	3329(6)	5560(6)	90(7)	48(5)	46(5)	9(4)	-2(5)	$-1(5)$
C(64)	8220(11)	2724(8)	5012(7)	116(9)	74(7)	38(5)	9(5)	9(6)	-18(7)
C(65)	8935(11)	2029(7)	5378(7)	103(8)	76(7)	51(6)	$-16(5)$	30(6)	4(7)
C(66)	9023(9)	1946(6)	6312(6)	64(6)	52(5)	47(5)	-4(4)	7(5)	6(5)

${ }^{a}$ The anisotropic displacement exponent takes the form: $-2 \pi^{2}\left(h^{2} a^{2} \times U_{11}+\ldots+2 h k a \times b \times U_{12}\right)$.
atoms can compete with the chelate effect of the $\mathrm{N}-\mathrm{N}$ bidentate ligands. Since a nearly quantitative yield of the product from the reaction between $\left[\mathrm{Mo}(\mathrm{MeCN})_{2}(\mathrm{CO})_{2}(\pi\right.$-allyl) Br$]$ and $\mathrm{N}-\mathrm{N}$ was obtained (cf. the experimental section), $\left[\mathrm{Mo}(\mathrm{N}-\mathrm{N})(\mathrm{CO})_{2}(\pi\right.$-allyl $\left.) \mathrm{Br}\right]$ and acetonitrile in solution are in equilibrium 2, and Le Châtelier's principle applies during the final workup in the synthesis of the product (i.e., as acetonitrile is removed under vacuum, the equilibrium shifts to the left and the product is finally obtained from the total conversion of $\left[\mathrm{Mo}(\mathrm{MeCN})_{2}(\mathrm{CO})_{2}(\pi\right.$-allyl) Br$\left.]\right)$.

Although the $\mathrm{Mo}-\mathrm{Br}$ and $\mathrm{Mo}-\mathrm{N}$ bond lengths in IV (Table 3) are longer than the corresponding ones in VI-IX [6-8], the Mo-CO bond lengths of 1.930(8) and $1.924(7) \AA$ in IV are not longer but shorter than those of $2.061(8), 1.911(8)$ in VI, $1.987(10), 1.950(10)$ in VII, $1.990(11), 2.005(12)$ in VIII and 1.992(24), 1.990(25) \AA in IX [6-8]. Since the distance between Mo and the central carbon atom (C_{c} or $\mathrm{C}(32)$) of the allyl group in IV, which is $2.200(8) \AA$, is much shorter than the Mo-C distances of 2.279(10) in VI, 2.274(13) in VII, 2.234(10) in VIII and 2.193(18) \AA in

Table 3
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for IV

Mo- Br	2.649(1)	Mo-N(1)	$2.307(5)$
Mo-N(4)	$2.327(5)$	Mo-C(11)	$1.930(8)$
$\mathrm{Mo}-\mathrm{C}(22)$	1.924(7)	Mo-C(31)	$2.312(8)$
Mo-C(32)	$2.200(8)$	Mo-C(33)	2.327(9)
$\mathrm{O}(11)-\mathrm{C}(11)$	$1.169(10)$	$\mathrm{O}(22)-\mathrm{C}(22)$	1.149(9)
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.380(8)$	$\mathrm{N}(1)-\mathrm{C}(52)$	1.351(9)
$\mathrm{N}(2)-\mathrm{C}$	$1.437(9)$	$\mathrm{N}(2)-\mathrm{C}(54)$	$1.338(9)$
N(3)-N(4)	1.363 (7)	$\mathrm{N}(3)-\mathrm{C}$	$1.449(9)$
$\mathrm{N}(3)-\mathrm{C}(42)$	$1.364(9)$	$\mathrm{N}(4)-\mathrm{C}(44)$	1.337(9)
$\mathrm{C}-\mathrm{C}(61)$	1.529(10)	$\mathrm{C}(31)-\mathrm{C}(32)$	1.385 (13)
$\mathrm{C}(32)-\mathrm{C}(33)$	1.394(14)	$\mathrm{C}(41)-\mathrm{C}(42)$	1.483(10)
$\mathrm{C}(42)-\mathrm{C}(43)$	1.362(10)	$\mathrm{C}(43)-\mathrm{C}(44)$	1.390(10)
$\mathrm{C}(44)-\mathrm{C}(45)$	1.492(10)	$\mathrm{C}(51)-\mathrm{C}(52)$	1.494(11)
$\mathrm{C}(52)-\mathrm{C}(53)$	1.387(10)	$\mathrm{C}(53)-\mathrm{C}(54)$	1.379(10)
$\mathrm{C}(54)-\mathrm{C}(55)$	1.471(11)	$\mathrm{C}(61)-\mathrm{C}(62)$	1.358(11)
$\mathrm{C}(61)-\mathrm{C}(66)$	1.395(11)	$\mathrm{C}(62)-\mathrm{C}(63)$	1.376 (11)
$\mathrm{C}(65)-\mathrm{C}(66)$	1.377(13)	$\mathrm{C}(65)-\mathrm{C}(64)$	1.377(15)
$\mathrm{C}(64)-\mathrm{C}(63)$	1.367(14)		
$\mathrm{Br}-\mathrm{Mo}-\mathrm{N}(1)$	80.2(1)	$\mathrm{Br}-\mathrm{Mo}-\mathrm{N}(4)$	81.3(1)
N(1)-Mo-N(4)	81.8(2)	$\mathrm{Br}-\mathrm{Mo}-\mathrm{C}(11)$	85.0(2)
$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{C}(11)$	163.9(3)	$\mathrm{N}(4)-\mathrm{Mo}-\mathrm{C}(11)$	102.2(3)
$\mathrm{Br}-\mathrm{Mo}-\mathrm{C}(22)$	90.7(2)	$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{C}(22)$	99.4(3)
$\mathrm{N}(4)-\mathrm{Mo}-\mathrm{C}(22)$	171.5(3)	$\mathrm{C}(11)-\mathrm{Mo}-\mathrm{C}(22)$	74.5(3)
$\mathrm{Br}-\mathrm{Mo}-\mathrm{C}(31)$	151.6(2)	$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{C}(31)$	82.7(3)
$\mathrm{N}(4)-\mathrm{Mo}-\mathrm{C}(31)$	118.5(3)	$\mathrm{C}(11)-\mathrm{Mo}-\mathrm{C}(31)$	108.2(3)
$\mathrm{C}(22)-\mathrm{Mo}-\mathrm{C}(31)$	70.0(3)	$\mathrm{Br}-\mathrm{Mo}-\mathrm{C}(32)$	167.9(2)
$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{C}(32)$	94.5(3)	$\mathrm{N}(4)-\mathrm{Mo}-\mathrm{C}(32)$	87.3(3)
$\mathrm{C}(11)-\mathrm{Mo}-\mathrm{C}(32)$	101.2(4)	$\mathrm{C}(22)-\mathrm{Mo}-\mathrm{C}(32)$	101.0(3)
$\mathrm{C}(31)-\mathrm{Mo}-\mathrm{C}(32)$	35.6(3)	$\mathrm{Br}-\mathrm{Mo}-\mathrm{C}(33)$	144.9(2)
$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{C}(33)$	128.8(3)	$\mathrm{N}(4)-\mathrm{Mo}-\mathrm{C}(33)$	84.0(3)
$\mathrm{C}(11)-\mathrm{Mo}-\mathrm{C}(33)$	67.3(3)	$\mathrm{C}(22)-\mathrm{Mo}-\mathrm{C}(33)$	101.4(3)
$\mathrm{C}(31)-\mathrm{Mo}-\mathrm{C}(33)$	62.0(3)	$\mathrm{C}(32)-\mathrm{Mo}-\mathrm{C}(33)$	35.7(3)
$\mathrm{Mo}-\mathrm{N}(1)-\mathrm{N}(2)$	125.5(4)	Mo-N(1)-C(52)	127.6(5)
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(52)$	104.2(5)	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}$	121.3(5)
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(54)$	112.4(5)	$\mathrm{C}-\mathrm{N}(2)-\mathrm{C}(54)$	125.0(6)
$\mathrm{N}(4)-\mathrm{N}(3)-\mathrm{C}$	122.7(5)	$\mathrm{N}(4)-\mathrm{N}(3)-\mathrm{C}(42)$	112.1(5)
$\mathrm{C}-\mathrm{N}(3)-\mathrm{C}(42)$	124.9(6)	$\mathrm{Mo}-\mathrm{N}(4)-\mathrm{N}(3)$	125.7(4)
Mo-N(4)-C(44)	127.8(4)	$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(44)$	104.8(5)
$\mathrm{N}(2)-\mathrm{C}-\mathrm{N}(3)$	113.5(5)	$\mathrm{N}(2)-\mathrm{C}-\mathrm{C}(61)$	114.9(6)
N(3)-C-C(61)	114.0 (6)	Mo-C(11)-O(11)	174.4(7)
$\mathrm{Mo}-\mathrm{C}(22)-\mathrm{O}(22)$	174.5(7)	$\mathrm{Mo}-\mathrm{C}(31)-\mathrm{C}(32)$	67.7(5)
Mo-C(32)-C(31)	76.6(5)	Mo-C(32)-C(33)	77.1(5)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	118.6(8)	Mo-C(33)-C(32)	67.2(5)
$\mathrm{N}(3)-\mathrm{C}(42)-\mathrm{C}(41)$	124.0(6)	$\mathrm{N}(3)-\mathrm{C}(42)-\mathrm{C}(43)$	105.4(6)
$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	130.5(7)	$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	107.3(6)
$\mathrm{N}(4)-\mathrm{C}(44)-\mathrm{C}(43)$	110.4(6)	$\mathrm{N}(4)-\mathrm{C}(44)-\mathrm{C}(45)$	123.6(6)
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	126.0(7)	$\mathrm{N}(1)-\mathrm{C}(52)-\mathrm{C}(51)$	122.5(7)
$\mathrm{N}(1)-\mathrm{C}(52)-\mathrm{C}(53)$	110.3(6)	$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)$	127.3(7)
$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$	107.0(6)	$\mathrm{N}(2)-\mathrm{C}(54)-\mathrm{C}(53)$	106.0(6)
$\mathrm{N}(2) \mathrm{C}(54) \mathrm{C}(55)$	124.1(7)	$\mathrm{C}(53) \mathrm{C}(54) \quad \mathrm{C}(55)$	129.8(7)
$\mathrm{C}-\mathrm{C}(61)-\mathrm{C}(62)$	121.0(6)	$\mathrm{C}-\mathrm{C}(61)-\mathrm{C}(66)$	119.4(6)
$\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{C}(66)$	119.6(7)	$\mathrm{C}(61)-\mathrm{C}(62)-\mathrm{C}(63)$	121.0(8)
$\mathrm{C}(66)-\mathrm{C}(65)-\mathrm{C}(64)$	119.3(9)	$\mathrm{C}(61)-\mathrm{C}(66)-\mathrm{C}(65)$	119.8(8)
$\mathrm{C}(65)-\mathrm{C}(64)-\mathrm{C}(63)$	121.0(9)	$\mathrm{C}(62)-\mathrm{C}(63)-\mathrm{C}(64)$	119.2(9)

Table 4
Crystal data for IV

Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{BrMo}$
Color; habit	yellow chunks
Crystal size (mm)	$0.5 \times 0.5 \times 0.4$
Space group	orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Unit cell dimensions	$a=10.866(3) \AA$
	$b=14.410(3) \AA$
	$c=14.657(3) \AA$
Volume	$2295(1) \AA$
Z	4
Formula weight	553.3
Density (calc.)	$1.601 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$2.306 \mathrm{~mm}^{-1}$
$F(000)$	1112
Diffractometer used	Nicolet $\mathrm{R} 3 \mathrm{~m} / \mathrm{V}$
Radiation	Mo- $K_{a}(\lambda=0.71073 \AA)$
Temperature (K)	297
Monochromator	highly oriented graphite crystal
2θ range	2.0 to 50.0°
Scan type	$\theta / 2 \theta$
Scan speed	Variable; 3.26 to $14.65^{\circ} /$ min. in ω
Scan range (ω)	1.02° plus K_{a}-separation
Background measurement	stationary crystal and stationary
	counter at beginning and end of
	scan, each for 50.0% of total
	scan time
Standard reflections	3 measured every 50 reflections
Index ranges	$0 \leqslant h \leqslant 12,-17 \leqslant k \leqslant 0,-17 \leqslant 1 \leqslant 0$
Reflections collected	$2365(1964>3.0 \sigma(I))$
Independent reflections	$2315(1944>3.0 \sigma(I))$
Extinction correction	$\chi=0.00018(8)$, where
	$F *=F\left[1+0.002 \chi F^{2} / \text { sin }(2 \theta)\right]^{-1 / 4}$
Hydrogen atoms	riding model, fixed isotropic U
Weighting scheme	$w^{-1}=\sigma^{2}(F)+0.0010 F^{2}$
Final R indices (obs. data)	$R=3.37 \%, R_{w}=3.54 \%$
Goodness-of-fit	1.10
Largest and mean Δ / σ	$0.054,0.000$
Data-to-parameter ratio	$7.1: 1$
Largest difference peak	$0.67 \mathrm{e} \AA \AA^{-3}$
Largest difference hole	$-0.57 \mathrm{e} \AA \AA^{-3}$

IX whereas the distances between Mo and the terminal carbon atoms (C_{1} or $C(31)$, $\mathrm{C}(33)$) of the allyl group in IV, which are $2.312(8), 2.327(9) \AA$, respectively, are within the range of the Mo-C C_{t} distances of 2.204-2.350 \AA in VI-IX, the C_{c} atom of the negative allyl anion in the $\mathrm{Mo}^{\text {II }}$ complex, IV, apparently donates more electron density toward the central metal atom in this complex than those in VI-IX. The bond angles, formed from the carbonyls, $\mathrm{C}(11) \mathrm{O}(11)$ and $\mathrm{C}(22) \mathrm{O}(22)$, the central Mo atom and the $\mathrm{C}(32)$ atom of the allyl group in IV, are not 90° but $101.2(4)^{\circ}$ for $\mathrm{C}(11)-\mathrm{Mo}-\mathrm{C}(32)$ and $101.0(3)^{\circ}$ for $\mathrm{C}(22)-\mathrm{Mo}-\mathrm{C}(32)$ (Table 4), probably help the better hack-donation of electron density from Mo to the carbonyls through the overlap of orbitals with suitable symmetry [4].

Experimental

All operations were performed by the usual Schlenk techniques [9], using deoxygenated, dry solvents and gases. IR spectra, calibrated with polystyrene, were recorded on a Hitachi Model 270-30 instrument; NMR spectra were obtained on a Bruker WP-100 $\left({ }^{1} \mathrm{H}, 100 \mathrm{MHz}\right)$ FT-NMR spectrometer. Proton chemical shifts (δ in ppm, J in hertz) are positive downfield or negative upfield relative to internal SiMe_{4} (TMS) standard. Elemental analysis results were obtained by the staff of the Microanalytical Service of the Department of Chemistry, National Cheng Kung University.

The ligands, $\mathrm{H}_{2} \mathrm{CPz}_{2}, \mathrm{H}_{2} \mathrm{CPz}_{2}^{\prime}, \mathrm{PhHCPz}_{2}$, and $\mathrm{PhHCPz}_{2}^{\prime}$, were prepared as described previously [10-13]. The complexes, $\left[\mathrm{Mo}\left(\mathrm{H}_{2} \mathrm{CPz}_{2}\right)(\mathrm{CO})_{4}\right]$, $\left[\mathrm{Mo}\left(\mathrm{H}_{2} \mathrm{CPz}_{2}^{\prime}\right)(\mathrm{CO})_{4}\right],\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}\right)(\mathrm{CO})_{4}\right],\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}^{\prime}\right)(\mathrm{CO})_{4}\right]$ and $[\mathrm{Mo}(\mathrm{Ph}-$ $\left.\mathrm{HCPz}_{2}^{\prime}\right)(\mathrm{CO})_{3}$], were prepared by literature methods [2,12-15]. The allyldicarbonyl complexes, I-IV, can be prepared by the following two methods (methods 1 and 2) while IV can also be prepared using the third method (method 3). Any method used can afford the complexes in the nearly quantitative conversion. The IR and NMR data are collected in Table 1.

Method 1. The orange-yellow complexes, I, III and IV, can be prepared by following a similar procedure to that for preparation of II [15]. The new compounds were further recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. I: Anal. Found: $\mathrm{C}, 34.27 ; \mathrm{H}, 3.10 ; \mathrm{N}$, 13.27. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrMoN}_{4} \mathrm{O}_{2}$ calc.: $\mathrm{C}, 34.23 ; \mathrm{H}, 3.11 ; \mathrm{N}, 13.30 \%$. III with one molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: Anal. Found: C, 39.12; H, 3.41; N, 9.59. $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{BrMoN}_{4} \mathrm{O}_{2}$ calc.: C , $39.20 ; \mathrm{H}, 3.29$; N, 9.62\%. IV: Anal. Found: C, 47.73; H, 4.64; N, 10.20. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BrMoN}_{4} \mathrm{O}_{2}$ calc.: $\mathrm{C}, 47.76 ; \mathrm{H}, 4.55 ; \mathrm{N}, 10.13 \%$.

Method 2. A solution of one mmol of $\left[\mathrm{Mo}(\mathrm{MeCN})_{2}(\mathrm{CO})_{2}(\pi\right.$-allyl $\left.) \mathrm{Br}\right][16]$ in 20 ml of MeCN was added to one mmol of $\mathrm{N}-\mathrm{N}$. The mixture was stirred for one hour and the solvent was removed under vacuum to give the product, I-IV.

Method 3. A solution of one mmol of $\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}^{\prime}\right)(\mathrm{CO})_{3}\right]$ [2] dissolved in 50 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with excess allyl bromide (ca. 0.5 ml). The mixture was stirred for one hour. Removal of the solvent and excess allyl bromide gave a solid residue. The product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane to give $0.55 \mathrm{~g}(95 \%)$ of IV.
X-Ray diffraction study of $\left[\mathrm{Mo}\left(\mathrm{PhHCPz}_{2}^{\prime}\right)(\mathrm{CO})_{2}(\pi\right.$-allyl)Br] (IV). The crystals of IV were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane at room temperature. General operating procedures and listings of programs were previously given [17]. Absorption correction was performed on this structure using ψ scans. Final coordinates of the non-hydrogen atoms (Table 2), selected bond lengths and bond angles (Table 3), and the related crystal data (Table 4) are reportcd. The H -atom coordinates and structural factors are available from the authors.

Acknowledgement

We thank the National Science Council of the Republic of China for financial support of this research. We also thank Mr. Chang-Chuan Chou for the preparation of IV.

References

1 K.-B. Shiu and C.-J. Chang, J. Organomet. Chem., 395 (1990) C47.
2 K.-B. Shiu, C.-C. Chou, S.-L. Wang and S.-C. Wei, Organometallics, 9 (1990) 286; 9 (1990) 2632.
3 (a) K.-B. Shiu, K.-S. Loiou, S.-L. Wang, C.P. Cheng, F.-J. Wu, J. Organomet. Chem., 359 (1989) C1;
(b) K.-B. Shiu, K.-S. Liou, S.-L. Wang and S.-C. Wei, Organometallics, 9 (1990) 669.

4 J.P. Collman, L.S. Hegedus, J.R. Norton and R.G. Finke (Eds.), Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA, 1987.
5 J.-L. Rousche and G.R. Dobson, J. Organomet. Chem., 150 (1978) 239.
6 R.H. Fenn and A.J. Graham, J. Organomet. Chem., 37 (1972) 137.
7 A.J. Grahan and R.H. Fenn, J. Organomet. Chern., 25 (1970) 173.
8 M.G.B. Drew, B.J. Brisdon and A. Day, J. Chem. Soc., Dalton Trans., (1981) 1310.
9 D.F. Shriver (Ed.), Manipulation of Air-Sensitive Compounds, McGraw-Hill, New York, 1969.
10 S. Julia, P. Sala, J. Mazo, M. Sancho, C. Ochoa, J. Elguero, J.-P. Fayet and M.-C. Vertut, Heterocycl. Chem., 19 (1982) 1141.
11 A.R. Katritzky, A.E. Abdel-Rahman, D.E. Leahy and O.A. Schwarz, Tetrahedron, 39 (1983) 4133.
12 K.-S. Liou, M.Sc. Thesis, National Cheng Kung University, Tainan, Taiwan, June 1988.
13 C.-C. Chou, M.Sc. Thesis, National Cheng Kung University, Tainan, Taiwan, June, 1989.
14 K.-B. Shiu and C.-J. Chang, J. Chin. Chem. Soc. (Taipei), 34 (1987) 297.
15 G. Gioia Lobbia and F. Bonati, J. Organomet. Chem., 366 (1989) 121.
16 B.J. Brisdon and M. Cartwright, J. Organomet. Chem., 164 (1979) 83.
17 K.-B. Shiu, F.-M. Shen, S.-L. Wang and S.-C. Wei, J. Organomet. Chem., 372 (1989) 251.

[^0]: * For Part XIII, see ref. 1.

